Function and regulation of Saccharomyces cerevisiae myosins-I in endocytic budding.

نویسندگان

  • Jonathan Giblin
  • Isabel María Fernández-Golbano
  • Fatima-Zahra Idrissi
  • María Isabel Geli
چکیده

Myosins-I are widely expressed actin-dependent motors which bear a phospholipid-binding domain. In addition, some members of the family can trigger Arp2/3 complex (actin-related protein 2/3 complex)-dependent actin polymerization. In the early 1990s, the development of powerful genetic tools in protozoa and mammals and discovery of these motors in yeast allowed the demonstration of their roles in membrane traffic along the endocytic and secretory pathways, in vacuole contraction, in cell motility and in mechanosensing. The powerful yeast genetics has contributed towards dissecting in detail the function and regulation of Saccharomyces cerevisiae myosins-I Myo3 and Myo5 in endocytic budding from the plasma membrane. In the present review, we summarize the evidence, dissecting their exact role in membrane budding and the molecular mechanisms controlling their recruitment and biochemical activities at the endocytic sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

She4p/Dim1p interacts with the motor domain of unconventional myosins in the budding yeast, Saccharomyces cerevisiae.

She4p/Dim1p, a member of the UNC-45/CRO1/She4p (UCS) domain-containing protein family, is required for endocytosis, polarization of actin cytoskeleton, and polarization of ASH1 mRNA in Saccharomyces cerevisiae. We show herein that She4p/Dim1p is involved in endocytosis and actin polarization through interactions with the type I myosins Myo3p and Myo5p. Two-hybrid and biochemical experiments sho...

متن کامل

Saccharomyces cerevisiae var. boulardii as a eukaryotic probiotic and its therapeutic functions

Fuller, in 1989, described probiotic microorganisms as “a live microbial feed supplement,which beneficially affects the host animal, by improving its intestinal microbial balance”.Saccharomyces cerevisiae var. boulardii (S.boulardii) is an accurate probiotic yeast idol.The detection and budding of S.boulardiiis firmly related to the impression of healthinessto promote microorganisms from foodst...

متن کامل

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Cortical actin dynamics driven by formins and myosin V.

Cell morphogenesis requires complex and rapid reorganization of the actin cytoskeleton. The budding yeast Saccharomyces cerevisiae is an invaluable model system for studying molecular mechanisms driving actin dynamics. Actin cables in yeast are formin-generated linear actin arrays that serve as tracks for directed intracellular transport by type V myosins. Cables are constantly reorganized thro...

متن کامل

Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes.

Cell adhesion and biofilm formation are critical processes in the pathogenicity of fungi and are mediated through a family of adhesin proteins conserved throughout yeasts and fungi. In Saccharomyces cerevisiae, Flo11 is the main adhesin involved in cell adhesion and biofilm formation, making the study of its function and regulation in this nonpathogenic budding yeast highly relevant. The S. cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2011